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SYMPOS IUM REPORT

Assistive technology and robotic control using motor
cortex ensemble-based neural interface systems
in humans with tetraplegia
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This review describes the rationale, early stage development, and initial human application of

neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices

designed to allow persons with paralysis to operate assistive technologies or to reanimate muscles

based upon a command signal that is obtained directly from the brain. Such systems require the

development of sensors to detect brain signals, decoders to transform neural activity signals into

a useful command, and an interface for the user. We review initial pilot trial results of an NIS that

is based on an intracortical microelectrode sensor that derives control signals from the motor

cortex. We review recent findings showing, first, that neurons engaged by movement intentions

persist in motor cortex years after injury or disease to the motor system, and second, that signals

derived from motor cortex can be used by persons with paralysis to operate a range of devices.

We suggest that, with further development, this form of NIS holds promise as a useful new

neurotechnology for those with limited motor function or communication. We also discuss the

additional potential for neural sensors to be used in the diagnosis and management of various

neurological conditions and as a new way to learn about human brain function.
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Neural interface (NI) systems offer a novel approach to
restore lost function and to diagnose or manage nervous
system disorders. A NI system (NIS) couples the nervous
system to a device that may either stimulate tissue or
record neural activity, or perform both in a closed loop
system. The NI sensor or stimulator can either be directly in
contact with the neural tissue or remotely located. An NIS
also typically includes a processor for signal conditioning
or stimulus delivery and may include a user interface.
Stimulation has the potential to provide missing sensory
signals, or could be used to modulate neural function,
while recordings can be used to assess the brain’s state or
intentions, or to provide commands that can be used as a
control signal to restore or replace lost motor functions.
Advances in neuroscience, engineering, computer science
and mathematics have accelerated the development of a
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range of NISs that could access a variety of biological
elements or physical devices. NI systems that stimulate
electrically are already in wide clinical use. More than
50 000 people have received cochlear implants to restore
hearing and more than 30 000 have received deep brain
stimulators to treat the symptoms of movement disorders
such as Parkinson’s disease and dystonia. The NI portion
of these systems consists of millimetre-scale surfaces in
contact with the tissue that is being stimulated. On the
other hand, NISs to read out neural activity are at a
much earlier stage of development. NIs with sensing
capabilities have the potential to be used as the input
side of a system that could serve as a diagnostic aid in
neurological and psychiatric disorders if they could
detect or predict abnormal brain function. There is also
considerable interest in using a sensory NI to provide a
command signal source for a system that could restore
communication or control abilities following paralysing
injuries or limb loss.

Devices that transform a neurally based motor intention
into a command signal that can operate physical systems
have been called brain–computer interfaces (BCIs), brain
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machine interfaces (BMIs), and neuromotor prostheses
(NMPs), among other names. No single term has yet
been established in this emerging field. We use the term
neural interface system here because all of these systems
rely on successful sensing of neural activity to provide
a command signal to control computers, machines, or
any of a range of prosthetic devices that span from
physical to biological elements. Thus, a sensing NIS is
agnostic to whether the detected signal is used to control
a wheelchair, a prosthetic limb, a computer, or biological
elements including voluntary muscles or viscera such as
bowel and bladder. Such devices would be useful to a
large number of people with physical disability that inter-
feres with mobility, communication or independence.
Target populations include those with spinal cord injury,
muscular dystrophy, stroke, cerebral palsy, amyotrophic
lateral sclerosis (ALS) and other motor neuron diseases,
limb loss, or any other condition where the limbs are largely
unable to perform useful body actions or speech, but there
remains cerebral function.

Types of NI sensors

Sensors that provide the source signal to an NIS vary in
design and have been classified in a number of different
ways. In one schema, NIs for sensing can be distinguished
as being intracortical or extracortical. While NISs have
been developed using either interface, differences between
them may affect the nature and form of the NIS and
the type of external device control that is attained. Intra-
cortical and extracortical NIs are mainly distinguished by
the nature of their contact with neural tissue, affording
certain differences in the signals they can detect. We define
an intracortical NI (iNI) as one that is in direct contact with
cortical parenchyma, in very close proximity to neurons.
By using different bandpass filtering such NIs are capable of
recording multiple forms of electrical potentials, including
single or multineuron spiking, as well as lower frequency
electrical components called local field potentials (LFPs).
A sensor able to record all of these features currently
requires the use of microelectrodes which have micro-
metre scale recording surfaces. One particular advantage
of an iNI is that it has the potential to record at higher
spatial resolution and to obtain a greater variety of signals
compared to an extracortical NI (eNI).

Action potentials are widely held to be the major form
of information coding in the nervous system (Stevens &
Zador, 1995). At least by current methodologies, recording
the spiking (action potential) activity of individual
neurons in vivo requires a fine-tipped microelectrode that
is placed in close proximity to a neuron, and hence the
requirement for an iNI. Most neurons generate an ∼1 ms
long spike at rates in the range of < 1 Hz up to 100–300 Hz.

Information related to spiking appears mainly to be carried
in the spike rate, typically measured as the number of
spikes within a defined interval (e.g. count in a 50 ms bin),
although some other aspects of spiking such as relative
timing (synchronization or coherence between neuron
pairs) may also carry significant information. Spike rate
in motor cortical areas modulates in conjunction with
various aspects of movement, such as hand position, speed,
direction, or force, and thus each of these parameters
might be potentially extracted as control signals. The
fact that spiking correlates with specific motor plans and
intentions indicates that it should provide a rich source of
movement information. If sufficient samples are acquired
across multiple cells and/or multiple areas, these signals
should be able, for example, to reveal many details of the
bilateral hand actions used to control a computer mouse
and keyboard.

Spikes alone do not provide all information about
ongoing neural processing (consider early ‘spikeless’
processing in the retina, for example.) One form of slower
intracerebral electrical signals are typically labelled local
field potentials. LFPs arise from transmembrane currents
driven by combinations of spiking, subthreshold synaptic
currents, electrical interactions, and the biophysical
properties of cell membranes; aspects of these signals
can be recorded, in a filtered version, extracortically as
well (using eNIs). The relative contribution of biological
elements to the field recording is complex and dependent
on the physical properties of recording devices and
filtering. For example, the contribution of spikes to the
LFP would increase when neurons fire highly time-locked
spikes or when frequency components closer to 1 kHz are
included in the measured signal. LFPs can spread various
distances across tissue in ways that are related to their
frequency, amplitude, synchrony or other features. LFPs
appear to carry different types of information in different
frequencies in the cortex (e.g. Donoghue et al. 1998;
Andersen et al. 2004). These complex features have made
it difficult to understand the full significance of LFPs and
their relationship to spiking (see Bullock, 1997). However,
both LFPs and spiking are potentially rich sources of
control signals for a motor prosthesis. Although it is widely
held that spiking patterns hold the greatest amount of
information related to neural coding and computation
(Stevens, 1995), there are now many renewed attempts to
determine how much of the same or new information can
be obtained from the LFP, because these signals are thought
to be easier to record than spiking (Andersen et al. 2004).
Hence they may possibly be a more pragmatic source
of commands for neural prosthetic applications, whether
or not they contain all of the information contained in
population spiking. It is most likely that the full bandwidth
of signals available in the cortex will ultimately provide
valuable information sources for NISs.
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Signals recorded by extracortical sensors

An eNI is a sensor placed outside the parenchyma that
detects spatially and temporally summed electrical or field
potentials generated by the same mechanisms that produce
the intracortically recorded LFP. Examples of eNI signals
available for a NIS are the volitionally regulated EEG,
event-locked or evoked potentials (EPs), and the electro-
corticogram (ECoG). Brain-derived electrical potentials
from the scalp are typically called the EEG, while the signals
recorded from the cortical surface are called the electro-
cortigram (ECoG). These signals are also related to the LFP,
but are filtered and volume averaged to varying degrees
compared to what can be recorded by an iNI. Differences
relate to the type of electrode used, the local filtering
of tissues and cerebrospinal fluid, neuronal orientation
relative to the cortical surface, and other factors. For
example, ECoGs contain higher frequency potentials and
information content because they avoid the substantial
lowpass filtering of extracortical tissues (including skull
and skin). Thus, signals recorded using iNIs that include
‘LFPs’ in frequency bands up to those generated during
spiking appear to provide even more information than
eNIs. In one case, intracortically recorded potentials have
been shown to carry about twice as much information
about arm movement direction as those recorded from
the cortical surface (Mehring et al. 2004).

In the case of EEG, a command signal is derived from a
relation between a learned brain state and the modulation
of frequency bands in the EEG. For example, there is a beta
frequency suppression related to the onset of movement
(Neuper & Pfurtscheller, 2001), as noted for the LFP.
Different EEG frequency bands appear to carry different
information and some can be controlled independently to
provide a multidimensional control signal, as discussed by
Wolpaw (2004, 2007). The ability to learn imagery which
sufficiently modulates these EEG signals to promote brief
epochs of cursor control is discussed elsewhere in this
volume. EPs provide another way to obtain information
from eNIs. The P300 wave is a scalp-measured response
evoked to an ‘oddball’ or cognitively valent stimulus; it
does not depend on learning a new association between
the stimulus and EEG signal. These signals have been used
effectively to identify screen location or letters of interest
in eNISs (Krusienski et al. 2006; Sellers, 2006).

There are a variety of other differences in sensors that
may affect their use in prosthesis systems. Sensors can vary
in their ‘invasiveness’. An iNI is invasive by definition. This
is necessary, at least at present, to detect spiking, which
requires close proximity of a microelectrode to a neuron;
eNis may be either non-invasive, by recording signals from
the scalp, or invasive if they are placed at various levels
below the skin, skull or meninges. The non-invasiveness
of some eNIs make it comparatively easy for many healthy
control subjects and patients to try NI systems or to adopt

them without a surgical procedure, a clear benefit of this
approach. However, scalp-based NISs must be applied to
the scalp daily (by a caregiver), may cause discomfort,
can be affected by head movement, and are conspicuous,
while iNi and subcutaneous eNi systems can be made
fully implantable and thus less susceptible to cosmetic or
movement-related limitations. External eNI sensors need
to be donned recurrently, while fully implanted systems
could be always ‘on’, a critical advantage for users who
desire immediate and 24 h access to a communication
or mobility system. A potential further advantage of an
iNI for prosthesis applications is that they provide signals
that contain movement information ordinarily generated
when movements are performed, without requiring the
user to learn arbitrary associations or concentrate on
stimuli. Further, iNIs are directly scalable, and thus
potentially able to derive signals related to multiple arm
and hand, or leg and foot actions, if sensors are placed
in each of these brain representations, including those
on each cerebral hemisphere. The mutual independence
of volitionally controlled intracortical signals is well
established; achieving this degree of independence for
volitionally modulated EEG waves is a more challenging
endeavor.

Development of an intracortical neural interface
system for humans with paralysis

The BrainGate neural interface system, which is being
developed by Cyberkinetics Neurotechnology Systems,
Inc. (CKI), is a NIS based upon an intracortical neural
interface. Below, we describe the concept of a NIS that
employs and intracortical sensor, review progress that has
been recently published related to pilot clinical trials, and
discuss how neural interfaces may develop into useful
devices to restore function, and diagnose and manage
neurological disorders.

One can think of a motor NIS (or motor neuro-
prosthesis; Leuthardt, 2006) as a series of interfaces: the
neural interface (for signal detection), a decoder inter-
face between the brain and the device to be controlled
(for signal interpretation) and a user interface (to make
practical use of the control signal to perform actions).
Fundamentally, the largest challenges for an iNIS at present
are the neural interface and decoders, which must together
be stable and reliable for any user interface to work. An
intracortical sensor-based NIS requires a placement near
a source of neural movement command signals and the
creation of a long-lasting sensor to detect these signals.
Once signals are obtained, specific methods are required
to decode, interpret, or translate the recorded pattern of
neural activity into a useful command signal. Utility of this
command signal can be judged in terms of both its signal
richness and its reliability. Decoding processes must be
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optimized to operate within the same time frame as actual
neural processing to allow real time control. The command
signal must also be able to operate useful devices, such as
a prosthetic limb or a computer, each of which present
distinct challenges. In addition, the signal could be used
to command muscles, by activating a functional electrical
stimulation (FES) system (Peckham & Knutson, 2005), to
restore direct brain-controlled limb movement. Although
not reviewed here, sensory feedback in a closed loop system
is highly desirable and might be achieved by either intra-
or extracortical interfaces.

Sources of neural movement command signals

Neural prosthesis work has heavily focused on attempting
to restore upper limb function. More than a dozen distinct
areas related to control of limb movement appear to
be present in the primate brain (Kalaska, 1992; Burnod
et al. 1999). Cortical regions spanning the frontal and
parietal lobes are engaged by various types of movement
preparation and action. Among these areas, the primary
motor cortex (MI), located in the posterior part of the
precentral gyrus, is generally believed to be the most closely
coupled to the production of movement. This conclusion
is supported by the confluence of electrical stimulation,
lesion, recording, connectional, and architectonic studies.
Separate MI regions control the leg, which is located most
medially in MI, the arm, and the face, which is most
laterally placed in MI. Thus, each may provide separate
command signal sources for axial or limb musculature
on each side of the body. The vast majority of neuro-
scientific data about motor cortex has been obtained from
experimental investigation of arm regions. This bias is
possibly based upon the fundamental significance of reach,
grasp and manipulation actions to humans and, with the
development of prosthesis systems, the clear and powerful
utility of restoring arm and hard control.

Figure 1. NIS implant and sensor
A, parts of the implant include the array, skull mounted percutaneous pedestal, and a 96 wire cable that connects
them. B, 10 × 10 array of electrodes, each separated by 400 μm. C, scanning electron micrograph one electrode
showing its shape and pointed, platinum (Pt)-coated tip.

Signal source and sensor

The goal for an iNI to record spikes places specific
design constraints on the sensor. The only readily available
method to detect spikes is a microelectrode; small
recording surfaces placed near neurons can detect spiking
extracellularly if it is less than a few hundred micro-
metres from the soma of the cell emitting the spike.
Waveform shapes distinguish separate neurons that may
be differentialted on a single electrode. Most neuro-
physiological studies of primate cortex employ single
microelectrodes and therefore provide restricted amounts
of information. A reliable estimate of movement features
in real time requires an array of many microelectrodes to
obtain simultaneously the individual spiking patterns of a
population of neurons.

It has been challenging to develop reliable micro-
electrode arrays. The task is made especially difficult for
brain interface applications where the goal is not only to
record many cells, but to maintain recording, ideally, for
decades. There are various forms of multielectrode arrays
under development (Donoghue, 2002). A multielectrode
array created by Richard Normann and colleagues
(Rousche & Normann, 1998) has been developed further
and is now being evaluated in a pilot clinical trial
(Hochberg et al. 2006). The array consists of 100 tapered
1 or 1.5 mm long microelectrodes in a 10 × 10 grid,
with electrodes spaced by 400 μm; the assembly forms a
4 × 4 mm base (Fig. 1). The entire array is carved from a
block of boron-doped silicon, with each electrode isolated
by a glass layer. The electrodes have a single recording
site at their tip. The arrays have been evaluated with
different forms of connectors and surgical methods in
a longitudinal series of preclinical studies leading up to
the pilot human trial (Maynard et al. 1999; Serruya et al.
2002, 2003; Suner et al. 2005). In its current design the
implant consists of the array, internal microcabling, and
a Ti pedestal. The pedestal is mounted on the skull and
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passes through the skin for connection to external electro-
nics (Suner, 2005). The array is implanted by first making a
small craniotomy and reflecting the dura. It is then tapped
into place via a pneumatic inserter, so that the electrode
tips lie within the pyramidal cell layers of the cortex and the
common base rests on the cortical surface. Once inserted,
the bone flap is replaced. The cabling from the array
passes extracranially through the skull to the pedestal. The
skin is then closed around the pedestal base, leaving only
the top of the pedestal exposed. Although human data
are currently being collected, a prospective study in
three of the monkeys examined up to 513 days showed
that multiple neurons could be recorded throughout the
test period with a mean of about 60 neurons being
detected at any time (Suner, 2005). Importantly, there
was no indication that the recordings in this preclinical
study declined as a result of tissue responses. Significant
impedance increases, which would be expected with
tissue reaction (Williams et al. 1999), did not occur,
suggesting that these arrays have features suitable for
human evaluation. Recent comparisons between single
moveable microelectrodes and the array demonstrated
substantial similarities in recording characteristics (Kelly
et al. 2007). Data from the first participant using this same
sensor have shown that many months of recording are
feasible in humans as well (Hochberg et al. 2006).

The multielectrode array used in the BrainGate NIS
differs from others being developed in that the array is
designed to float with the cortical surface. By contrast,
assemblies of microwires, another form of iNI, are typically
affixed to the skull’s surface. This arrangement would be
expected to produce damage as a result of relative motion
between the skull and the brain in humans. Flexible micro-
wire or thin film silicon electrodes, a new form of iNIs, can
be difficult to insert and to stabilize because they have no
support substrate at the cortical surface (Lee et al. 2005;
Johnson et al. 2005). Multisite silicon thin film electrodes,
which provide many recording sites per probe are being
developed, and may become suitable for human clinical use
(Vetter et al. 2004). Design flexibility in thin film electro-
des not only could provide more sample sites per electrode,
but the ability to incorporate electronics or other features
directly on the electrode.

Decoding

Creation of a control signal from the spiking pattern of
a population of neurons requires the ability to decode
or translate that pattern. Such a decoding method must
exploit fundamental properties of the neural code. We
know from studies of MI neurons recorded one at a time in
the pioneering work of Evarts, Humphrey, Fetz, Schmidt,
Georgopoulos and their colleagues that neurons in the
MI arm area carry information about hand kinematics

and forces (Hatsopoulos, 2005). In addition, hand motion
can be reasonably well reconstructed from the weighted
average of neural firing, even when only a small sample
of the neurons engaged in action is available (McIlwain,
2001). Surprisingly, as few as six MI neurons enable
some prediction of the motion of the hand through space
during reaching; this improves substantially as the number
approaches around 100 (Serruya et al. 2003; Wessberg
& Nicolelis, 2004), even though millions of neurons are
engaged during such actions. Presumably, sampling more
neurons provides information about a wider range of
actions, but defining the full range of information that
can be extracted from any one sample of neurons is an
area of ongoing inquiry. The decoder effectively serves as
a replacement for the missing parts of the nervous system.
The sample of neurons obtained is a small subset of all the
neurons engaged in even the simplest voluntary actions
and this sparse sampling can result in a noisy decoded
output signal. A decoder must exploit prior information,
for example that the decoded hand movement should be
smooth, to estimate reliable control parameters. In most
cases researchers have attempted to replicate the action
of the hand (its position or motion in space) from the
recorded activity of a neural population.

Various methods have been used to decode spiking
patterns into behavioural or motor correlates (Serruya,
2003). Algorithms are being evaluated that extract hand
position, direction and speed or grasping actions using
linear and non-linear classes of filters; state classifiers are
also being used to decode neural activity (Maynard, 1999;
Santhanam et al. 2006). These decoding algorithms must
analyse large amounts of neural data and still be efficient
enough to work in real time for prosthetics applications.
Work in able-bodied monkeys showed that decoding can
be implemented with sufficient speed and accuracy for
a hand controlled mouse-driven cursor to be replaced
with one that was driven by the decoded firing patterns
from the MI arm area (see e.g. Serruya et al. 2002; Taylor
et al. 2002). Extending these results to obtain higher
dimensional control of devices such as robot arms and
hands remains an open challenge. Decoding of LFPs also
provides hand motion information that can augment, or
potentially substitute for, aspects of spiking information
(Scherberger, 2005); how spikes and LFPs compare as
useful signals in neuroprosthetic applications for persons
with motor disabilities is an active area of inquiry.

BrainGate pilot trial: translation to humans

An iNIS that allows neuronal ensemble activity to serve
as a control signal has substantial potential benefit for
those with limited movement abilities. An iNIS could
connect one or multiple areas of cortex to external devices
to restore communication, mobility, or other forms of
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functional independence. Preclinical data in able-bodied
monkeys demonstrated the efficacy of the core elements
of an NIS: the efficacy of the interface, the ability to
decode the population information, decoding and use
of this information (Maynard et al. 1999; Serruya et al.
2002; Suner et al. 2005; Paninski et al. 2004; Wu et al.
2006). The human version of the iNI based prosthesis
system was granted an investigational device exemption
by the US Food and Drug Administration (FDA) for
two pilot clinical trials. The first permits up to five
persons with spinal cord injury, brainstem stroke or
muscular dystrophy to be enrolled; the second is a similar
trial for up to five persons with motor neuron diseases,
including ALS. Four participants with tetraplegia have
been enrolled – two with high cervical spinal cord injury,
one with a brainstem stroke and one with ALS. All
were implanted with the BrainGate sensor in the MI
arm area as located by anatomical criteria (Yousry et al.
1997). Initial data from two of the participants revealed
several important findings essential for the development
of a successful iNIS (Hochberg, 2006b). First, action
potentials were readily recorded in MI years after spinal
cord injury. This demonstrates that injury does not
silence motor cortex spiking, despite inability to move
the limbs. Second, immediate modulation of MI neurons
was possible merely by attempting or imagining action.
Thus, neuronal spiking in MI can still be activated by
movement intentions years after injury. Further, limb
movement is not required for this neural modulation
to occur. In addition, LFPs were also simultaneously
recorded and these signals appeared to contain movement
intention related information (Hochberg et al. 2006b).
These findings, which are essential to the development of
iNISs, had not been previously demonstrated for persons
with spinal cord injury.

It was also found that MI neurons were engaged by
a diverse set of intended actions that include the hand
and arm. Different neurons had distinctive properties so
that some correlated with imagined or intended opening
or closing of the hand, while others nearby became
active with intended reaching movements of the arm.
Examples of single neurons that were active both with
actual shoulder movement and with imagined arm actions
were also identified. It was possible to create decoders
that translated intended actions into a command signal
sufficiently quickly to be used in real time. This signal
was used to demonstrate the ability to operate computer
software, assistive technologies, and robotic devices (see
Hochberg, 2006b for video demonstrations). No time
was required for participants to gain neural control of
these devices, except for that necessary to create the
decoding filter that related MI neural activity patterns
to the desired action (approximately 20 min). That is,
motor learning is not required to gain initial control, pre-
sumably because control signals were driven by the brain’s

natural neuronal signals for arm control. Whether learning
by the participant can play a role in further changes in
performance has not yet been explored.

These preliminary results provide initial proof of
concept that a neuronally based control system is feasible:
signals can be detected, decoded and used for real time
operation of computer software, assistive technologies,
and other devices. The presence of LFP signals not unlike
those seen in able-bodied monkeys suggests that iNIs
will provide a rich signal source that ranges from LFPs
to spikes. However, additional evaluation is necessary
to show that reliable performance of the iNIS can
be obtained in multiple participants. Our more recent
preliminary observations in one participant with brain-
stem stroke and one participant with ALS suggest that
the findings in spinal cord injury may generalize across
a broad population of persons with tetraplegia arising
from various causes (Donoghue et al. 2006; Hochberg et al.
2006a). Day-to-day differences in the number of neurons
(and presumably the composition of neurons) will present
additional challenges to providing a consistently reliable
command signal for an iNIS which will be based on a small
sample of the neurons that ordinarily generate movement.
Such challenges are also substantial for eNI based systems:
there are considerable instabilities related to electrode
placement and attachment, individual variability, artifacts,
and brain state changes that will need to be overcome
(Krause et al. 2001; McFarland et al. 2005).

Next-step developments for an NIS

A practical iNIS to provide assistive actions would require
advances beyond the current BrainGate pilot system. First,
a fully implantable NIS would eliminate tethering of the
patient that results from the physical connection of the
percutaneous pedestal to the signal processor cart. A fully
implantable system also reduces the concern of infection at
the pedestal site. Second, automated set up and operation is
needed to eliminate the need for a skilled technician. Third,
miniaturization is necessary to allow greater mobility.
These latter two advances are necessary for eNIS as well.
Additional improvements in the neural interface itself
may also improve the reliability, stability and richness of
neural signals available for control. Steps are already being
taken towards many of these goals. A number of groups
are working on fully implantable, active sensors, which
require integrated electronics, self-powering and high
bandwidth signal transmission. Nurmikko and colleagues
are developing iNIs with signal amplification mounted on
the array itself and signal processing contained in a sub-
cutaneous microscale platform that can transmit wirelessly
across the skin (Song et al. 2005). Another novel advance of
this iNI is its implantable fibre optic powering and signal
transmission. Light delivered by the optical fibre can be
converted to power and the same fibre can convey all of
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the high bandwidth signal generated by a 100+ electrode
array.

The ongoing human trial has also provided a rare
opportunity to observe human neural function at a new
level and to create much more powerful decoders. The
stability and smoothness of the control signal has been
improved using Kalman filtering approaches (Wu et al.
2006) and the ability to stop the cursor and click at
desired locations has been added, although the long-term
reliability of this control remains to be validated (Kim,
2006). This advance would approximate the functions
of a mouse input device. Developments in modern
electronics make it possible to reduce the current bulky
signal processing hardware to very compact and portable
components. These initial successes for the iNIS, and
the potential promise for those who have limited ability
to move, seem to further pursuing these engineering
improvements.

Beyond connecting to a wide variety of physical
devices ranging from computers to robots, this same
neural interface system could also be used to reanimate
paralysed limbs. Functional electrical stimulation (FES)
systems can activate paralysed but otherwise normal
muscles (for example, in people with cervical spinal cord
injury), through implanted wires that deliver electrical
currents (Peckham & Knutson, 2005). Current FES systems
typically use external switches or sensors on muscles
that remain under voluntary control. Connecting a brain
interface system to an FES system could create a physical
bridge from the brain’s motor areas to the muscles,
replacing an absent biological path. Research to develop
a brain to muscle connection is already underway in
collaboration with researchers at the Cleveland FES centre
through a contract with the National Center for Medical
Rehabilitation Research.

Future application of neural interfaces

The rapid expansion of efforts in the area of intracortical
neural interfaces and the proof of concept demonstration
of their feasibility indicates that this technology is likely
to expand and develop into an integral part of the
management of neurological disorders, just as cardiac
pacemakers grew from a bold new concept that began
with a cart of external stimulators and oscilloscopes
into a small implantable disk with on-board electronics
that is now readily accepted as a safe way to address
cardiac arrhythmias (Kirk, 2001). This is not to say that
there will not be setbacks in NIS development. This is
very complex technology that requires a stable interface
between man-made components and a dynamic biological
system that responds over time in ways that we do not
fully understand. Physical devices break and materials can
degrade, despite efforts to prevent failure. However, there
is a growing body of knowledge about the biocompatibility

and biostability of various materials in the body, from
artificial joints, cardiac and neural pacemakers (i.e. deep
brain stimulators), and cochlear implants, that is likely to
lead to continuous improvement of the biological–device
interface.

NI systems based on intracranial and extracranial
sensors share many goals, challenges and benefits. Both
could provide utility to those with limited motor function.
Advances in signal processing and human user inter-
faces will aid in the development of both forms of NIS.
In addition, the iNI can potentially also provide a new
form of high resolution sensor to report abnormal spiking
or LFP patterns in diseased or damaged brains, with
many potential clinical applications. Abnormal neuro-
nal ensemble activity is at the base of many neuro-
logical and psychiatric disorders, but there is actually very
little neuroscientific evidence that describes the nature of
that abnormal activity. Epilepsy presents a potential use
for NISs, where we know that a transition from usual
brain electrical patterns to pathologically synchronous
discharges leads to seizures. We could envision a neural
sensor near an epileptic focus that would be a sensitive
measure of the transition from the ‘normal’ to the
abnormal state. Such a signal, if identified early enough
could provide a valuable warning of an impending seizure.
Of course, we do not know how to detect the signatures
of these abnormal electrical events at present. However, if
such events could be reliably detected it might further be
possible to create a device that interferes with the transition
to abnormal activity patterns through either electrical or
pharmacological interventions. An initial effort at such
a closed loop system using an eNIS is now in clinical
trials (Morrell, 2006). These ideas require considerable
additional evaluation, but the exquisite sensitivity of
a multielectrode iNI is a promising tool to measure
neural events at very high resolution that extends beyond
anything now available.
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